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1 ON THE CHOICE OF MESH IN THE INTIDRATION 
OF ORDINARY DIFFERENTIAL ~UATIONS 

ABSTRACT 

The optimum mesh at point xis defined here as the interval, h(x), 
which minimizes the time of integration of an ordinary differential 
equation while maintaining a prescribed bound of the error. An attack 
upon the problem of constructing such a mesh is carried out here with 
the aid of the Calculus of Variations. The Euler equations are derived 
and discussed, and the results are extended to a system of differential 
equations. 
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INI'RO!ll CTION 

In th~ numerical integrat.ion of' ordinary difi'erential equations by 
a step-by-!itep method it is sometimes advantageous to change the stept 
h, as the tntegration proceeds; This suggests the following problem: 
"Given the equation 

y' = f(x,y)~ y(O) "'y0, ~x":X (l) 

and a numerical method whose local truncation error is of order hk, k 2 2, 
required the function h(x), such that 1) the accumulated error, By, 
does not ax:ceed a prescribed bound, E*, and 2) the time of integration 
is minimized• ~ 

Provide!). oy is sufficiently small, it will satisfy the variational 
equ11-tion 

&c By = fy53' ·~ Y) /h, 

wh<'l.I'e ·11 is the loca.l error per step. If t: is an upper bound of the 
rate of the local error; i.e., 

(2) 

h ;+-Ea (3) 

then 5y has an upper bound, B(x), satisfying the differential equation1) 

(4) 

whose solution is 

ll:(x) = f exp { f (a.,y(o.)) da.e( t.) d~.()) 
0 c. 

A bDund C:: :j., of the error rate can be estimated as 

e /h hk-1 hk 
1 = R + ~k + \l'k+l +, "' 

Where R is a bound of the local rounding error and ll'k(x),~k+l (x) are 

functions of the zeroth order in h.. If 

k 
R LL. (k-1) lfl/+l/ 'P k+l 

it is poss'ible to choose h such that 

h " m I R/(k-1) "'k ll;k < h , <. lp jlfl .· 
'1' I ~ k k+l' 

(6) 

(7) 

(8) 



Then the second term in (6) dominates the third, and e !:z. ~ khk-l lpk' so 

that a new bound can be conveniently chosen as t! = kh)c- 1 the subscript 
k of 1j) having been dt-opped: If the rounding error is negligible, a more 
practical boU!'ld would be 

(9) 

which we shall adopt here. no. .the other halld,_ if the rounding error iS 
not negligible, the results to be derived will remain valid pt"ovided 'I' 
is replaced by k ·lj) wherever it oc=s• 

The simple problem of minimizing E(x), regardless of the time 
consumed, is seen from (5) to be equivalent to that of millimizing 

E: 1 ,. R/h + hk-l'l}'~ Two properties of the solution, furnished by the 

function h =- h (x), may be noted in passing: 1) E
1

(h ) = khk-llj), 2) R: m · m m 

hkm~,.. (k-1): 1; i.e~ the local error bound is partitioned betw~ the 
. 2) 

rounding and the truncation in the ratio (k - 1): 1. The latter result 
should be contrasted with the popular notion that this ratio should not 
exceed unity. 

The function'IJ(x) is listed below for some of the more collllnonly 
used methods of step-by-step integration. 

---~------· -

)Method 

Eular 

Modified Buler3) 

" " 

Kutta 

Runge-Kutta4> 
L--~~---~-

·- ----· 

k 

2 

3 

3 

4 

_L_ ___ ~----

Table 1 
--~------

X Remarks 

1 
Y' I' ~ 

1 Y' I I 
1 

1~ -~ fyYt I I one iteration 

1 
12 

yl I I 
two iterations 

c(x)y(5) 
·-------------------·· -- I -

The modified Euler method with one iteration, calle<l by som!l the Heun 
method, can be cited as an exception to the general rule that <p is of the 
form 

'lfJ (x) "" c(x)y(k) (x)
1 (10) 

where y(k) is the derivative of order k and c(x) depends on f(x,y) and 
the method used~ 
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If new variables H(x), S(x) are now defined as 

H(x) =I exp (- Jx fy ( ~ )d t_) if! (x)/lf(O) I ~' 
0 

S(ll') = exp (-

(h) can be rewritten 

s•-lP(O)hk-l ilk= o, s(o) = o~ 

(11) 

(12) 

(13) 

The time t, of integration for a given method is proportional to t,he 
number of integration steps: Therefore, 

X 

t(x) = S d~jh(~), 
0 

(14) 

or -1 ... 
t• - h = o. (15) 

• 

the th.ree 1.1Jl]mown functions h, s, and t are thus connected by ttro non­
bo1onomic constraints (13) and (15). The system therefore has one 
degree of freedom, which can be realized by an arbitrary choice of h(x). 

VARIATIONAL APPROACH 

We identify our problem with the Problem of BalzJ) in the Calculus 
of Variations: "Required the function h(x) in the prescribed range 
(~ .. o. ~· = x) • which minimizes the fu.nction g "t(x2) and satisfies 

' the differential constraints 

¢1 = \j) (o)0-¥Cx) - s• = o, 

r/2 .. h -l - t• = o, 

subject to the end-conditions 

S(O) ~t(O) = o, S(X) = s* 

The Lagrangia11, 

7 

X 

.;E*exp(-J :rye,;; )d~ )." 
0 

(16) 

(17) 

(18) 



'· -·' 

must satisfy the Euler equations 

<nth 

:z;1 "' h, :z;2 = s, :z;3 .. t. 

Then (19) becomes 

leading immediately to 

h = h(O)H-l 

h(O) = I )..2/(k-1) !}' (O)"l. I~. = · ·const, 
• 

The parameter h(O) is determined from the end-conditions as 

1 X 

h(o) = I s* IV (o) J 
.. 0 

H cc; J d~ IN: , 

and t(X) f'r.om (22.1), (16.2) as 

X 

t(X) = f H (c;) d~ /h(O)~ 
0 . . 

It can be shown that t L 't, where t corresponds to a constant 
interval,n. For we have from (16) 

X 

11 = I s'>:/ ljJ (o) J If 
0 

8 
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(20) 

(21) 

(22) 

(23) 

(24) 

(25) 
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Hence, vtith the and of the Holder ine:tuality6 ) for k"-1, there folious 
k 1 

1-;::K I'!W: 
t: t: =I H F I - < 1, (26) 

where H an4 ~ are the mea.'l values of H and If', respectively, on the 
interval (O,X). Thi.s result, of course, tvould be expected if our 
solution furnishes the absolute rninilll1ll11 of t-~ 

From (16) and (22.1) can be deduced 

d.S/dt = const: 
X 

E(x) = t exp J fy ( E )d~const~, 
0 

(27) 

which admiifs of the i'ollowing interpretation: "All points of an optimum 
mesJl make equal contributions to the final trtmcation error". 

THE EFFECT OF DISCONTINUITIES 

Since the use of a continuous h(x) is physically impossible, it may 
be replaced by some convenient step-f1LYJ.Ction1 such as 

h~(x) =h. (0)2m, m = o, + 1, + 2, ••• , (28) 
,.. 'l~ - -

with the aqditional constraint 

~3 = m• = o, (29) 

the augmented Lagrangian, 

F = ~ (1/'(0)hk-lHk-s,) + x2_(h-1- t•) + xyn• , (3o) 

must satisfY the Corner Condition7J, 

£::,. Fz! = 01 f::.(F - Z{ Fz!) "' O, 
1 1 

wheroe £::,. denotes a "jump"; e.g., 

b.F=F -F + 

From ( 31) and ( 30) is obtained 

Ll. ~ =6X2 =6X:; = 0 

1:. (X
1 

lJ) (0 )hk-l If + X
2
h -l) = 0~ 

9 

(31) 

(32) 

(33) 



Iff is of class ck-l• then 

1::. f = o, A H = o, y 

and we ded11-ce3 with the aid of (28), 

(34) 

(35) 

FJ.nally, if m(O) = 0 andiAm\= 1, (35) yields Jf2-m = 1 at corners, and 

m(x) = - [ lol! H(x)/log 2] (36) 

holding ev<;n"ywhere, the symbol t]denoting the integral part of a number 
h(O) and t(X) can now be calculated from (17) as 1 

X \JC-I 
h*(O) = l s*/'fi(O) s 2(k-l)m( E,.) Hk( ~)d ~ 

0 (37) 

(0)~ 

THE EFFECT OF Im"LaUALITIES 

Since R, "lj) k, ~ k+ 1 occurring in ( 8 ) are generally difficult to 

calculate, some ather convenient bounds may be imposed on h in the general 
form. 

a'h (x)~b; (38) 

Furthet'lllore, instead of prescribing the terminal error bound, E(X), there 
may be imposed a bound on the function E(x): 

E(x) ~ E*. (39) 

Inasmuch as h(x) is di.scontillllous, the usual Tangency Condition does not 
hold, so that the inequalities (38), (39) must be enforced directly~ 

It is to be noted that putting an upper bound on h prevents the break­
down of the solution when 1ji (x) = o, leading to H(k) = 0 in (ll) and h(x) .,co 
in (22 )~ 

THE SUFFTCIENCY CON:mTION 

For a strong relative minimum the Sufficiency Conditiona8 ) are I, II'n 
. ' III', IV, described below. The Hultipliet> Rule, I, is satisfied by the 

solution of the Euler equation provided ')..l and ')..2 are not both zero and 

the Transversality Condition is satisfied"; The latter, in our problem 
reduces to 

10 
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= 0 • 

The Weierstrauss Condition, II:h$ expressed in terms of the E­
function, is 

(40) 

(41) 

E(z• ,z•) .. F(x,z,zv) - F (x,z,z') - (Z'-z' )Fz 1 (x,z,zr )~o, (42) 

wh&'e the slope functions zt are functions oft he field coordinate& 
x,z_in the neighborhood of the· solution and 1:' r zt • If the derivatives 
of certain variables \: are lacking· in F • then such \: must be classed 
a slope function and · (42) modified accordi~ly. In our problem, there­
fore, the slope functions are hs S• • t' • and (42) becomes, in vieW" of 
(30), (22) 

E "' \
1 

1jJ ( 0 )If 6hk-l + x
2

ah -l 

(43) 

where 6h denotes a strong variation and 

(44) 

we observe that h~o, ~"""-1• k~2, and 

<1 • ~'k - 1 - k~""" o if - 1.:: ~ r o, k~ o (45) 

Thus (42) is equivalent to the requirement 

(46) 

which is obviously satisfied, since 

(47) 

in virtue of (41) and (21)~ 

The Clebsh Condition, III' • is 

. • Fz•z1 6z• iazwj":..o (48) 

for all 8zt i satisfying the differentiated equations of constraint"; In 

11 



our p!'Oblem h(x) is the only slope function contributing to the quadratic 
fom, so that (48) becomes . 

(49) 

which is automatically satisfied, since 

The positive-definiteness of the second variation, which is required 
by Condition IV•, in our p!'Oblem reduces to 

iJ = f \2kh-J 6h2dx..:.. o, (So) 
0 

since ~ and x2 are fixed, while g and the end-functions ·are linear in 

their arguments. Since all the conditions are s~tisi'ied, the Ullique 
sol\ltion (22) furnishes an absolute minimum of t. 

AN APffiOXIMATE OOLUTION 

If fy• y(k), c(x) are replaced by some constant bounds defined by 

means of 

\ fy\ ~ L, \ ICx) \ ~ MLk-1, \c(x) \~ c, 

then (10) becomes 

VJ (x) = cMLk-l = 'fJ ( 0) 

In terms of the dimensionless quantities 

xt = Lx, h' = Lh, 

(11), (12) reduce to 

H = e-x/k, S = E(x)e-x 

on dropping the :primes, while (22-25) become, respectively 

h = h(O)ex/k 

, I · -X. 
h(O) =I~ 'X~'-

nc k (1-e- fl() 

12 

1 
K-r 

' 

(51) 

(52) 

(53) 

(54) 

• 



• 
k (1 - e -X;k) 1, t(X) "'li'('1j) 

LE* 
T K-I 

n= I 
e-"'· 

I Mil"- -7 ' 1 -e 
t(X) .. x;'li, 

for the discontinuous solution (28), (36), (37) become, respectively~ 

1 
lW 

•• 

A comparison of the discontinuous and the continuous solutions yields 

(55) 

(56) 

h* (x): h(x) = t'le -x/k f(k), (57) 

t* : t = f-l (k) log 4, 

where f(k), defined by 
1 

f'(k) = 1 k/2(1-2-k) 11<=!"" 

is a weak function of k. It has the properties 

f(O) = log 4, f(l) = e/2, f'(oo) "' 1, r·~o 

and is tabulated below. 

Table 2 

k __ i_. __ G 1 2 3 

f(k) 1.39 1.36 1.33 1.31 

t*:t 1.00 1.02 1.05 1.06 

In the range 2 ~ k .:.. oo 

1 ~ f(k) ~ 4/3, 

13 

(58) 

(59) 

4 5 

1.29 1.27 

1.08 1.09 

{60) 

6 

1.25 

l.ll 



while 2me -x/k is a periodic pieceWise monotonic function oscillating 
between the values 1/2 and 1 with the period x = k log 2. Conse'l.uently, · • 
h*: h oscillates in the range 

(61) 

so that the continuous and the discontinuous s::>lutions are interlaced. 

If X is approximated by an integral multiple of the period k log 2, 
we may put 

X=Nklog2. 

and deduce from (55), (56) 

. ::. ¢(N ,k ). 

2(1-2-k) (1-2-N) 

1-2-Nk 

1 
K-I 

(62) 

(63) 

The following special values and an asymptotic expansion of ¢(N,k) are 
to be noted: 

¢(l,k) ... 13 ¢(m ,k) " 0, 
1. 

I 2(1-2-k) 11{:! if N.-... 00 

Consequently, as N ranges from 1 to oo the nrela.tive gain", 1 - ¢, of 
the optimum mesh, h/x).- in comparison with the constant mesh, 'li, 

(64) 

ranges from 0 to 1. It should be noted, however, that the use of 
constant bounds in (51) may lead to a solution h(x) which is fantastically 
smaller than the one based on the local bound E:(x), varying from point to 
point·~ For this reason the results of this section must be used with 
caution. · 

ON THE CHOICE OF ~1ETHOD OF INTEGRATION 

If we do not restrict ourselves to a particular method, the preceding 
results enable us to choose the optimum k; By making the reasonable 
assumption that the time of integration. per step is proportionaJ. to the 
order of accuracy, k-1, we can write t as an explicit function of k, in the 
fom 

X X 

t = (k-1) J \: (E. )d! J 
0 . 0 

1 
K-I 

Hk( ~)d~ ltlk (o)/s* (6;5) 

where Hk is a knawn function of x, and proceed to minimize t with respect 

14 



to k~ For example, if Hk(x) 3 1flk(O) should be constants independent of 

k, the optiii!UIIl k = k* is 

k* .. [1 + log A J • 
(66) 

As one would naturally expect, k* increases with -~he range I and with 
the precision required. 

In iterative procedures the n1.llllber1 v (x)s of cycles p!!r step can 
also be optimized. This can be achieved by introducing v as a factor 
of t and rl!garding E (h,v) as a known .function of h, v, as well as x~ 
Then h(x) and v(x) are determined fr0111 the Euler equations. 

h~h+vEv=O • 

X 

log (h
2 

E: h/v) = S fy( ~) d~+ const. 
0 

11. SYSTEM OF DIFFERENI'IAL ~UATIONS 

The construction of optii1!WD mesh can be extended to a system 

The Lagrangian can now be written 

F =p(~+ JE- Et) + 11. (h-1.-tt), 

where J is the Jacobian matrix 

Jij = of/oYj• 

E and E are column matrices satisfying the relations 

(67) 

(68) 

(69) 

(70) 

(71) 

and p(x) is a raw of Lagrange multipliers~ Generally, in this section a 
bar placed above a letter will denote matrix transposition~ Let the 
end-conditions be 

E(O) = O, t(O) "'O, P= I E(X) I - E* a 0 (72) 

15 



The Euler equations yield 

i:L• ~- i:L J, 

h = h (0) H-~ 

Hi: I jlx;ir( 0) ljJ ( 0) 11/k. 
The solution of (73~1) is 

i:L(x) = i'Ji( 0) Z (x) 1 

Wher'e Z is the matrix solution of 

z• : - z J~ z(o) = r, 

(73) 

(74) 

(75) 

I being the 1liii t matrix. Since J and Z beeome known functions of x as 
soon as y(x) is knCMn, it remains to·determine the n independent 
constants ~ (0), h(O), satisfying the constraint 

\ \ 

l/2 
l~-~o(O) : l2:1£2i (0) = 1; (76) 

The latter condition may be imposed without any loss of generality, since 
(74) is a linear homogeneous equation; 1£(0) can be found with the aid of 
the Transver'sali ty condition X 

= o, (77) 

where 

E*) - t (78) 

a. being a constant Lagrange multiplier: From (77),(78) 1 (69) follows 

!J.(x) = a. E(x)/ \ E(x) \ 1 (79) 

which, in view (75). (77) yields 

~(o) = !(x)z-1 Cx>/ !(x)z-1 (x) ';' (80) 

Although E(X) appearing in (80) is not immediately available, it is 
possible to calculate an approximation by extrapolating y(X) to "zero­
mesh": An iterative process may then be set up between (80) and (73) 0 

whi.ch may converge to yield the value of 1£(0}". Finally, h(O) may be 
determined from the end-conditions, with the aid of 

X 

E(x) = z-1(x) s Z.(~) '!) (e) hk-l (e) d~ (81) 

0 

16 
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• 
and of (73), as 

[ 

X ') ,._l,. I., . I K-.L 

h(O) = Z(X)E(X)/( Z(~) ijJ (C:) dE: s· 
I jO jfi(O)Z(~) 1/) (£;) ~1-1/k 

(82) 

Obviously, if n = 1 
X 

J = ry, z "'exp C- So ry d~ ), J.L{o) .. 1 (8.3) 

so that {81), (82), and (73~3) reduce to (5) {23) and (11)3 respectively~ 

NUNERIGAL EXAMPLE 

Required the numerical solution of y• = 2y -ex, ;r(O) " 1 by the method 
of Ru11ge-Kutta, with a precision of E* "' 1 at X = 10.4~' Since the formal 
solution is kn01m ·to be y = eX, it is pMsible to ·write down the theoretical 
optimum mesh~ Here lj) (x) = c(x)ex · , '# (0) = c{O) From Table 1, 
fy = 2' so that i'rorn (11) 3 (12), (36), (37) there follqws: 

H = e-x/k • s*"' e-2x, m = [x/k log 2], 
><. 1 

h (o) = 5~ F-I'"" 
* e(O) 2 (1-2-k) (1-2-N) 

and i'rom ( 25) 
1 

s* k-1 
ii= 

c(O) (1-2-Mi:) 

~ = x;n ·~ 

In our example k = 5;. hence N "'3 f'rom (62); c(x) = 0~073 = c(O) i'rom 
formula (13) of reference 3 y: The numerical values now become: 

m(x) = [ x/3.47] • 

h*(o) "' o:oo93 • 
t~ = 651 steps, 

'>< 

1i = o:mo6 , 
T: = 981 steps, 

giving the optimum mesh a relative gain of 34%; 

17 
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Of course, in nu.merical work the solution y(x) is not knmm a 
priori~ The optimum mesh can be constructed by a computing machine, 
using a rough 'integration of the differential equation yt "': f(x,y) 
with an arbitrary initia:th(O), combined With the folloWing algorithm: 

X 

Ll.m"' [c S 9~)d~-log~/l') (o) )jk log 2 ], 

0 

Y) = hk i.p = (LI.y(l) - .6 y(2) /(l-2)-k+l), 

m(xi 1) = m(x.) +Lim, + . l. 

h = h(O) fl, 
(87) 

Her!l Y) is an estimate of the local truncation er;-oJ;", lihich ~~ calculated 
by means of extrapolation to "zero mesh0 9) • .Ll.y~lJ andll.y( are the 
increments of y due to step h and a succession of two half-steps, h/2. · . 

. (87.1) is a consequence of (36) and (ll). The constmt,h(O) satisfying 
the condition E(x) = E* can be fotmd by some suitable Error Control 
pi"ocedurelO). 

CONCLUSIONS 

We have shown that an optimum mesh exists and have described the 
process whereby it could be constructed:; General.J.y, the sa:ving of time 
depends on t!).e differential equation to be integrated, the method used, 
and the range gf integration. As would be expected, the sa:ving increases 

. with the rang~ If the latter is sufficiently great, the gain will 
exceed the cost of additional labor necessary for the construction of the 
optimUIIl mesh, and will fully justify its use. 

BORIS GARFINKEL 
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